This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the scalar product of a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝐵 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ) | |
| 2 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) | |
| 3 | 2 | anim2i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) ) → ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) ) |
| 5 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝐵 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐵 ) ) ∈ ℋ ) |
| 7 | 1 6 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝐵 ) ∈ ℋ ) |