This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homahom.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| homahom.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | ||
| Assertion | homahom2 | ⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 2 | homahom.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | |
| 3 | df-br | ⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | 1 | homarcl | ⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
| 6 | 1 4 | homarcl2 | ⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 7 | 6 | simpld | ⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 8 | 6 | simprd | ⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 9 | 1 4 5 2 7 8 | elhoma | ⊢ ( 〈 𝑍 , 𝐹 〉 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) ) |
| 10 | 3 9 | sylbi | ⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) ) |
| 11 | 10 | ibi | ⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) |
| 12 | 11 | simprd | ⊢ ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 → 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) |