This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homahom.h | |- H = ( HomA ` C ) |
|
| homahom.j | |- J = ( Hom ` C ) |
||
| Assertion | homahom2 | |- ( Z ( X H Y ) F -> F e. ( X J Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | |- H = ( HomA ` C ) |
|
| 2 | homahom.j | |- J = ( Hom ` C ) |
|
| 3 | df-br | |- ( Z ( X H Y ) F <-> <. Z , F >. e. ( X H Y ) ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | 1 | homarcl | |- ( <. Z , F >. e. ( X H Y ) -> C e. Cat ) |
| 6 | 1 4 | homarcl2 | |- ( <. Z , F >. e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 7 | 6 | simpld | |- ( <. Z , F >. e. ( X H Y ) -> X e. ( Base ` C ) ) |
| 8 | 6 | simprd | |- ( <. Z , F >. e. ( X H Y ) -> Y e. ( Base ` C ) ) |
| 9 | 1 4 5 2 7 8 | elhoma | |- ( <. Z , F >. e. ( X H Y ) -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) ) |
| 10 | 3 9 | sylbi | |- ( Z ( X H Y ) F -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) ) |
| 11 | 10 | ibi | |- ( Z ( X H Y ) F -> ( Z = <. X , Y >. /\ F e. ( X J Y ) ) ) |
| 12 | 11 | simprd | |- ( Z ( X H Y ) F -> F e. ( X J Y ) ) |