This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoaddcom | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑆 = if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) → ( 𝑆 +op 𝑇 ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op 𝑇 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑆 = if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) → ( 𝑇 +op 𝑆 ) = ( 𝑇 +op if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑆 = if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) → ( ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ↔ ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op 𝑇 ) = ( 𝑇 +op if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op 𝑇 ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) ) | |
| 5 | oveq1 | ⊢ ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( 𝑇 +op if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) ) = ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) +op if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) ) ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op 𝑇 ) = ( 𝑇 +op if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) ) ↔ ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) = ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) +op if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) ) ) ) |
| 7 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 8 | 7 | elimf | ⊢ if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) : ℋ ⟶ ℋ |
| 9 | 7 | elimf | ⊢ if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) : ℋ ⟶ ℋ |
| 10 | 8 9 | hoaddcomi | ⊢ ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) +op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) = ( if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) +op if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) ) |
| 11 | 3 6 10 | dedth2h | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ) |