This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hosmval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | 1 1 | elmap | ⊢ ( 𝑆 ∈ ( ℋ ↑m ℋ ) ↔ 𝑆 : ℋ ⟶ ℋ ) |
| 3 | 1 1 | elmap | ⊢ ( 𝑇 ∈ ( ℋ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℋ ) |
| 4 | fveq1 | ⊢ ( 𝑓 = 𝑆 → ( 𝑓 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑓 = 𝑆 → ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) |
| 6 | 5 | mpteq2dv | ⊢ ( 𝑓 = 𝑆 → ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 7 | fveq1 | ⊢ ( 𝑔 = 𝑇 → ( 𝑔 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑔 = 𝑇 → ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 9 | 8 | mpteq2dv | ⊢ ( 𝑔 = 𝑇 → ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 10 | df-hosum | ⊢ +op = ( 𝑓 ∈ ( ℋ ↑m ℋ ) , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 11 | 1 | mptex | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ∈ V |
| 12 | 6 9 10 11 | ovmpo | ⊢ ( ( 𝑆 ∈ ( ℋ ↑m ℋ ) ∧ 𝑇 ∈ ( ℋ ↑m ℋ ) ) → ( 𝑆 +op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 13 | 2 3 12 | syl2anbr | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |