This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmopre | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmop | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) | |
| 2 | 1 | 3anidm23 | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 3 | 2 | eqcomd | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 4 | hmopf | ⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 5 | 4 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 6 | hire | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) | |
| 7 | 5 6 | sylancom | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 8 | 3 7 | mpbird | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ) |