This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmopre | |- ( ( T e. HrmOp /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmop | |- ( ( T e. HrmOp /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
|
| 2 | 1 | 3anidm23 | |- ( ( T e. HrmOp /\ A e. ~H ) -> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) |
| 3 | 2 | eqcomd | |- ( ( T e. HrmOp /\ A e. ~H ) -> ( ( T ` A ) .ih A ) = ( A .ih ( T ` A ) ) ) |
| 4 | hmopf | |- ( T e. HrmOp -> T : ~H --> ~H ) |
|
| 5 | 4 | ffvelcdmda | |- ( ( T e. HrmOp /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
| 6 | hire | |- ( ( ( T ` A ) e. ~H /\ A e. ~H ) -> ( ( ( T ` A ) .ih A ) e. RR <-> ( ( T ` A ) .ih A ) = ( A .ih ( T ` A ) ) ) ) |
|
| 7 | 5 6 | sylancom | |- ( ( T e. HrmOp /\ A e. ~H ) -> ( ( ( T ` A ) .ih A ) e. RR <-> ( ( T ` A ) .ih A ) = ( A .ih ( T ` A ) ) ) ) |
| 8 | 3 7 | mpbird | |- ( ( T e. HrmOp /\ A e. ~H ) -> ( ( T ` A ) .ih A ) e. RR ) |