This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homeomorphism is a quotient map. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeoqtop | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 2 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 ∈ Top ) |
| 4 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 8 | 6 7 | hmeof1o | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 ) |
| 9 | f1ofo | ⊢ ( 𝐹 : ∪ 𝐽 –1-1-onto→ ∪ 𝐾 → 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 ) | |
| 10 | forn | ⊢ ( 𝐹 : ∪ 𝐽 –onto→ ∪ 𝐾 → ran 𝐹 = ∪ 𝐾 ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ran 𝐹 = ∪ 𝐾 ) |
| 12 | hmeoima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) | |
| 13 | 5 1 11 12 | qtopomap | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐾 = ( 𝐽 qTop 𝐹 ) ) |