This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeof1o2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Homeo K ) ) -> F : X -1-1-onto-> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 2 | cnf2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Cn K ) ) -> F : X --> Y ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Homeo K ) ) -> F : X --> Y ) |
| 4 | 3 | ffnd | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Homeo K ) ) -> F Fn X ) |
| 5 | hmeocnvcn | |- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
|
| 6 | cnf2 | |- ( ( K e. ( TopOn ` Y ) /\ J e. ( TopOn ` X ) /\ `' F e. ( K Cn J ) ) -> `' F : Y --> X ) |
|
| 7 | 6 | 3com12 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ `' F e. ( K Cn J ) ) -> `' F : Y --> X ) |
| 8 | 5 7 | syl3an3 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Homeo K ) ) -> `' F : Y --> X ) |
| 9 | 8 | ffnd | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Homeo K ) ) -> `' F Fn Y ) |
| 10 | dff1o4 | |- ( F : X -1-1-onto-> Y <-> ( F Fn X /\ `' F Fn Y ) ) |
|
| 11 | 4 9 10 | sylanbrc | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( J Homeo K ) ) -> F : X -1-1-onto-> Y ) |