This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeocnv | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnvcn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 2 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3 4 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 6 | frel | ⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → Rel 𝐹 ) | |
| 7 | 2 5 6 | 3syl | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → Rel 𝐹 ) |
| 8 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ ◡ 𝐹 = 𝐹 ) |
| 10 | 9 2 | eqeltrd | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ ◡ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 11 | ishmeo | ⊢ ( ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ ◡ ◡ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ) | |
| 12 | 1 10 11 | sylanbrc | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) |