This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlsuprexch.b | |- B = ( Base ` K ) |
|
| hlsuprexch.l | |- .<_ = ( le ` K ) |
||
| hlsuprexch.j | |- .\/ = ( join ` K ) |
||
| hlsuprexch.a | |- A = ( Atoms ` K ) |
||
| Assertion | hlsuprexch | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlsuprexch.b | |- B = ( Base ` K ) |
|
| 2 | hlsuprexch.l | |- .<_ = ( le ` K ) |
|
| 3 | hlsuprexch.j | |- .\/ = ( join ` K ) |
|
| 4 | hlsuprexch.a | |- A = ( Atoms ` K ) |
|
| 5 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 6 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 7 | eqid | |- ( 1. ` K ) = ( 1. ` K ) |
|
| 8 | 1 2 5 3 6 7 4 | ishlat2 | |- ( K e. HL <-> ( ( K e. OML /\ K e. CLat /\ K e. AtLat ) /\ ( A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( ( 0. ` K ) ( lt ` K ) x /\ x ( lt ` K ) y ) /\ ( y ( lt ` K ) z /\ z ( lt ` K ) ( 1. ` K ) ) ) ) ) ) |
| 9 | simprl | |- ( ( ( K e. OML /\ K e. CLat /\ K e. AtLat ) /\ ( A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( ( 0. ` K ) ( lt ` K ) x /\ x ( lt ` K ) y ) /\ ( y ( lt ` K ) z /\ z ( lt ` K ) ( 1. ` K ) ) ) ) ) -> A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) ) |
|
| 10 | 8 9 | sylbi | |- ( K e. HL -> A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) ) |
| 11 | neeq1 | |- ( x = P -> ( x =/= y <-> P =/= y ) ) |
|
| 12 | neeq2 | |- ( x = P -> ( z =/= x <-> z =/= P ) ) |
|
| 13 | oveq1 | |- ( x = P -> ( x .\/ y ) = ( P .\/ y ) ) |
|
| 14 | 13 | breq2d | |- ( x = P -> ( z .<_ ( x .\/ y ) <-> z .<_ ( P .\/ y ) ) ) |
| 15 | 12 14 | 3anbi13d | |- ( x = P -> ( ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) <-> ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) ) |
| 16 | 15 | rexbidv | |- ( x = P -> ( E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) <-> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) ) |
| 17 | 11 16 | imbi12d | |- ( x = P -> ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) <-> ( P =/= y -> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) ) ) |
| 18 | breq1 | |- ( x = P -> ( x .<_ z <-> P .<_ z ) ) |
|
| 19 | 18 | notbid | |- ( x = P -> ( -. x .<_ z <-> -. P .<_ z ) ) |
| 20 | breq1 | |- ( x = P -> ( x .<_ ( z .\/ y ) <-> P .<_ ( z .\/ y ) ) ) |
|
| 21 | 19 20 | anbi12d | |- ( x = P -> ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) <-> ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) ) ) |
| 22 | oveq2 | |- ( x = P -> ( z .\/ x ) = ( z .\/ P ) ) |
|
| 23 | 22 | breq2d | |- ( x = P -> ( y .<_ ( z .\/ x ) <-> y .<_ ( z .\/ P ) ) ) |
| 24 | 21 23 | imbi12d | |- ( x = P -> ( ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) <-> ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) ) ) |
| 25 | 24 | ralbidv | |- ( x = P -> ( A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) <-> A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) ) ) |
| 26 | 17 25 | anbi12d | |- ( x = P -> ( ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) <-> ( ( P =/= y -> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) ) ) ) |
| 27 | neeq2 | |- ( y = Q -> ( P =/= y <-> P =/= Q ) ) |
|
| 28 | neeq2 | |- ( y = Q -> ( z =/= y <-> z =/= Q ) ) |
|
| 29 | oveq2 | |- ( y = Q -> ( P .\/ y ) = ( P .\/ Q ) ) |
|
| 30 | 29 | breq2d | |- ( y = Q -> ( z .<_ ( P .\/ y ) <-> z .<_ ( P .\/ Q ) ) ) |
| 31 | 28 30 | 3anbi23d | |- ( y = Q -> ( ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) <-> ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) ) |
| 32 | 31 | rexbidv | |- ( y = Q -> ( E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) <-> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) ) |
| 33 | 27 32 | imbi12d | |- ( y = Q -> ( ( P =/= y -> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) <-> ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) ) ) |
| 34 | oveq2 | |- ( y = Q -> ( z .\/ y ) = ( z .\/ Q ) ) |
|
| 35 | 34 | breq2d | |- ( y = Q -> ( P .<_ ( z .\/ y ) <-> P .<_ ( z .\/ Q ) ) ) |
| 36 | 35 | anbi2d | |- ( y = Q -> ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) <-> ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) ) ) |
| 37 | breq1 | |- ( y = Q -> ( y .<_ ( z .\/ P ) <-> Q .<_ ( z .\/ P ) ) ) |
|
| 38 | 36 37 | imbi12d | |- ( y = Q -> ( ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) <-> ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |
| 39 | 38 | ralbidv | |- ( y = Q -> ( A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) <-> A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |
| 40 | 33 39 | anbi12d | |- ( y = Q -> ( ( ( P =/= y -> E. z e. A ( z =/= P /\ z =/= y /\ z .<_ ( P .\/ y ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ P ) ) ) <-> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) ) |
| 41 | 26 40 | rspc2v | |- ( ( P e. A /\ Q e. A ) -> ( A. x e. A A. y e. A ( ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ A. z e. B ( ( -. x .<_ z /\ x .<_ ( z .\/ y ) ) -> y .<_ ( z .\/ x ) ) ) -> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) ) |
| 42 | 10 41 | mpan9 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A ) ) -> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |
| 43 | 42 | 3impb | |- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( P =/= Q -> E. z e. A ( z =/= P /\ z =/= Q /\ z .<_ ( P .\/ Q ) ) ) /\ A. z e. B ( ( -. P .<_ z /\ P .<_ ( z .\/ Q ) ) -> Q .<_ ( z .\/ P ) ) ) ) |