This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlim2 | |- ( ( F : NN --> ~H /\ A e. ~H ) -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( w = A -> ( F ~~>v w <-> F ~~>v A ) ) |
|
| 2 | oveq2 | |- ( w = A -> ( ( F ` z ) -h w ) = ( ( F ` z ) -h A ) ) |
|
| 3 | 2 | fveq2d | |- ( w = A -> ( normh ` ( ( F ` z ) -h w ) ) = ( normh ` ( ( F ` z ) -h A ) ) ) |
| 4 | 3 | breq1d | |- ( w = A -> ( ( normh ` ( ( F ` z ) -h w ) ) < x <-> ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| 5 | 4 | rexralbidv | |- ( w = A -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| 6 | 5 | ralbidv | |- ( w = A -> ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| 7 | 1 6 | bibi12d | |- ( w = A -> ( ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) <-> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
| 8 | 7 | imbi2d | |- ( w = A -> ( ( F : NN --> ~H -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) <-> ( F : NN --> ~H -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) ) |
| 9 | vex | |- w e. _V |
|
| 10 | 9 | hlimi | |- ( F ~~>v w <-> ( ( F : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) |
| 11 | 10 | baib | |- ( ( F : NN --> ~H /\ w e. ~H ) -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) |
| 12 | 11 | expcom | |- ( w e. ~H -> ( F : NN --> ~H -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) ) |
| 13 | 8 12 | vtoclga | |- ( A e. ~H -> ( F : NN --> ~H -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
| 14 | 13 | impcom | |- ( ( F : NN --> ~H /\ A e. ~H ) -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |