This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in Kalmbach p. 140; also remark in BeltramettiCassinelli p. 98. ( hatomistici analog.) (Contributed by NM, 21-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlatmstc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| hlatmstc.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| hlatmstc.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| hlatmstc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | hlatmstcOLDN | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatmstc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | hlatmstc.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | hlatmstc.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | hlatmstc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | hlomcmat | ⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ) | |
| 6 | 1 2 3 4 | atlatmstc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |