This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in Kalmbach p. 140; also remark in BeltramettiCassinelli p. 98. ( hatomistici analog.) (Contributed by NM, 21-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlatmstc.b | |- B = ( Base ` K ) |
|
| hlatmstc.l | |- .<_ = ( le ` K ) |
||
| hlatmstc.u | |- U = ( lub ` K ) |
||
| hlatmstc.a | |- A = ( Atoms ` K ) |
||
| Assertion | hlatmstcOLDN | |- ( ( K e. HL /\ X e. B ) -> ( U ` { y e. A | y .<_ X } ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatmstc.b | |- B = ( Base ` K ) |
|
| 2 | hlatmstc.l | |- .<_ = ( le ` K ) |
|
| 3 | hlatmstc.u | |- U = ( lub ` K ) |
|
| 4 | hlatmstc.a | |- A = ( Atoms ` K ) |
|
| 5 | hlomcmat | |- ( K e. HL -> ( K e. OML /\ K e. CLat /\ K e. AtLat ) ) |
|
| 6 | 1 2 3 4 | atlatmstc | |- ( ( ( K e. OML /\ K e. CLat /\ K e. AtLat ) /\ X e. B ) -> ( U ` { y e. A | y .<_ X } ) = X ) |
| 7 | 5 6 | sylan | |- ( ( K e. HL /\ X e. B ) -> ( U ` { y e. A | y .<_ X } ) = X ) |