This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive/associative law for inner product, useful for linearity proofs. (Contributed by NM, 10-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hiassdi | |- ( ( ( A e. CC /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A .h B ) +h C ) .ih D ) = ( ( A x. ( B .ih D ) ) + ( C .ih D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | |- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
|
| 2 | ax-his2 | |- ( ( ( A .h B ) e. ~H /\ C e. ~H /\ D e. ~H ) -> ( ( ( A .h B ) +h C ) .ih D ) = ( ( ( A .h B ) .ih D ) + ( C .ih D ) ) ) |
|
| 3 | 2 | 3expb | |- ( ( ( A .h B ) e. ~H /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A .h B ) +h C ) .ih D ) = ( ( ( A .h B ) .ih D ) + ( C .ih D ) ) ) |
| 4 | 1 3 | sylan | |- ( ( ( A e. CC /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A .h B ) +h C ) .ih D ) = ( ( ( A .h B ) .ih D ) + ( C .ih D ) ) ) |
| 5 | ax-his3 | |- ( ( A e. CC /\ B e. ~H /\ D e. ~H ) -> ( ( A .h B ) .ih D ) = ( A x. ( B .ih D ) ) ) |
|
| 6 | 5 | 3expa | |- ( ( ( A e. CC /\ B e. ~H ) /\ D e. ~H ) -> ( ( A .h B ) .ih D ) = ( A x. ( B .ih D ) ) ) |
| 7 | 6 | adantrl | |- ( ( ( A e. CC /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A .h B ) .ih D ) = ( A x. ( B .ih D ) ) ) |
| 8 | 7 | oveq1d | |- ( ( ( A e. CC /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A .h B ) .ih D ) + ( C .ih D ) ) = ( ( A x. ( B .ih D ) ) + ( C .ih D ) ) ) |
| 9 | 4 8 | eqtrd | |- ( ( ( A e. CC /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A .h B ) +h C ) .ih D ) = ( ( A x. ( B .ih D ) ) + ( C .ih D ) ) ) |