This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in Kalmbach p. 140. Also Definition 3.4-2 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hatomic |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 | ||
| 2 | sseq2 | ||
| 3 | 2 | rexbidv | |
| 4 | 1 3 | imbi12d | |
| 5 | h0elch | ||
| 6 | 5 | elimel | |
| 7 | 6 | hatomici | |
| 8 | 4 7 | dedth | |
| 9 | 8 | imp |