This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of size two is an unordered pair of elements of its superset. (Contributed by Alexander van der Vekens, 12-Jul-2017) (Proof shortened by AV, 4-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash2sspr | |- ( ( P e. ~P V /\ ( # ` P ) = 2 ) -> E. a e. V E. b e. V P = { a , b } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 | |- ( p = P -> ( ( # ` p ) = 2 <-> ( # ` P ) = 2 ) ) |
|
| 2 | 1 | elrab | |- ( P e. { p e. ~P V | ( # ` p ) = 2 } <-> ( P e. ~P V /\ ( # ` P ) = 2 ) ) |
| 3 | elss2prb | |- ( P e. { p e. ~P V | ( # ` p ) = 2 } <-> E. a e. V E. b e. V ( a =/= b /\ P = { a , b } ) ) |
|
| 4 | simpr | |- ( ( a =/= b /\ P = { a , b } ) -> P = { a , b } ) |
|
| 5 | 4 | reximi | |- ( E. b e. V ( a =/= b /\ P = { a , b } ) -> E. b e. V P = { a , b } ) |
| 6 | 5 | reximi | |- ( E. a e. V E. b e. V ( a =/= b /\ P = { a , b } ) -> E. a e. V E. b e. V P = { a , b } ) |
| 7 | 3 6 | sylbi | |- ( P e. { p e. ~P V | ( # ` p ) = 2 } -> E. a e. V E. b e. V P = { a , b } ) |
| 8 | 2 7 | sylbir | |- ( ( P e. ~P V /\ ( # ` P ) = 2 ) -> E. a e. V E. b e. V P = { a , b } ) |