This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is an element of the set of subsets with two elements in a set, an unordered pair of sets is in the set. (Contributed by Alexander van der Vekens, 12-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exprelprel | ⊢ ( ∃ 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } 𝑝 ∈ 𝑋 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elss2prb | ⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) ) | |
| 2 | eleq1 | ⊢ ( 𝑝 = { 𝑣 , 𝑤 } → ( 𝑝 ∈ 𝑋 ↔ { 𝑣 , 𝑤 } ∈ 𝑋 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → ( 𝑝 ∈ 𝑋 ↔ { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
| 4 | 3 | biimpcd | ⊢ ( 𝑝 ∈ 𝑋 → ( ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
| 5 | 4 | reximdv | ⊢ ( 𝑝 ∈ 𝑋 → ( ∃ 𝑤 ∈ 𝑉 ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
| 6 | 5 | reximdv | ⊢ ( 𝑝 ∈ 𝑋 → ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
| 7 | 6 | com12 | ⊢ ( ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 ( 𝑣 ≠ 𝑤 ∧ 𝑝 = { 𝑣 , 𝑤 } ) → ( 𝑝 ∈ 𝑋 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
| 8 | 1 7 | sylbi | ⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } → ( 𝑝 ∈ 𝑋 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) ) |
| 9 | 8 | rexlimiv | ⊢ ( ∃ 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } 𝑝 ∈ 𝑋 → ∃ 𝑣 ∈ 𝑉 ∃ 𝑤 ∈ 𝑉 { 𝑣 , 𝑤 } ∈ 𝑋 ) |