This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gznegcl | ⊢ ( 𝐴 ∈ ℤ[i] → - 𝐴 ∈ ℤ[i] ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn | ⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) | |
| 2 | 1 | negcld | ⊢ ( 𝐴 ∈ ℤ[i] → - 𝐴 ∈ ℂ ) |
| 3 | 1 | renegd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 4 | elgz | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) | |
| 5 | 4 | simp2bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 6 | 5 | znegcld | ⊢ ( 𝐴 ∈ ℤ[i] → - ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 7 | 3 6 | eqeltrd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ - 𝐴 ) ∈ ℤ ) |
| 8 | 1 | imnegd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) |
| 9 | 4 | simp3bi | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 10 | 9 | znegcld | ⊢ ( 𝐴 ∈ ℤ[i] → - ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 11 | 8 10 | eqeltrd | ⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ - 𝐴 ) ∈ ℤ ) |
| 12 | elgz | ⊢ ( - 𝐴 ∈ ℤ[i] ↔ ( - 𝐴 ∈ ℂ ∧ ( ℜ ‘ - 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ - 𝐴 ) ∈ ℤ ) ) | |
| 13 | 2 7 11 12 | syl3anbrc | ⊢ ( 𝐴 ∈ ℤ[i] → - 𝐴 ∈ ℤ[i] ) |