This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elgz | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ 𝐴 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ℜ ‘ 𝑥 ) ∈ ℤ ↔ ( ℜ ‘ 𝐴 ) ∈ ℤ ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ℑ ‘ 𝑥 ) = ( ℑ ‘ 𝐴 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( ℑ ‘ 𝑥 ) ∈ ℤ ↔ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
| 5 | 2 4 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( ℜ ‘ 𝑥 ) ∈ ℤ ∧ ( ℑ ‘ 𝑥 ) ∈ ℤ ) ↔ ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) ) |
| 6 | df-gz | ⊢ ℤ[i] = { 𝑥 ∈ ℂ ∣ ( ( ℜ ‘ 𝑥 ) ∈ ℤ ∧ ( ℑ ‘ 𝑥 ) ∈ ℤ ) } | |
| 7 | 5 6 | elrab2 | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) ) |
| 8 | 3anass | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ↔ ( 𝐴 ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |