This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptf1o.x | ⊢ Ⅎ 𝑥 𝐻 | |
| gsummptf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| gsummptf1o.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummptf1o.i | ⊢ ( 𝑥 = 𝐸 → 𝐶 = 𝐻 ) | ||
| gsummptf1o.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptf1o.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsummptf1o.d | ⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) | ||
| gsummptf1o.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐹 ) | ||
| gsummptf1o.e | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐸 ∈ 𝐴 ) | ||
| gsummptf1o.h | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) | ||
| Assertion | gsummptf1o | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptf1o.x | ⊢ Ⅎ 𝑥 𝐻 | |
| 2 | gsummptf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | gsummptf1o.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | gsummptf1o.i | ⊢ ( 𝑥 = 𝐸 → 𝐶 = 𝐻 ) | |
| 5 | gsummptf1o.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 6 | gsummptf1o.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 7 | gsummptf1o.d | ⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) | |
| 8 | gsummptf1o.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐹 ) | |
| 9 | gsummptf1o.e | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐸 ∈ 𝐴 ) | |
| 10 | gsummptf1o.h | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) | |
| 11 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ⊆ 𝐵 ) |
| 12 | 11 8 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 13 | 12 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 15 | 3 | fvexi | ⊢ 0 ∈ V |
| 16 | 15 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 17 | 14 6 12 16 | fsuppmptdm | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) finSupp 0 ) |
| 18 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ) |
| 19 | 10 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) |
| 20 | eqid | ⊢ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) | |
| 21 | 20 | f1ompt | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) : 𝐷 –1-1-onto→ 𝐴 ↔ ( ∀ 𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) ) |
| 22 | 18 19 21 | sylanbrc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) : 𝐷 –1-1-onto→ 𝐴 ) |
| 23 | 2 3 5 6 13 17 22 | gsumf1o | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝐺 Σg ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) ) ) |
| 24 | eqidd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) | |
| 25 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 26 | 18 24 25 | fmptcos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) = ( 𝑦 ∈ 𝐷 ↦ ⦋ 𝐸 / 𝑥 ⦌ 𝐶 ) ) |
| 27 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) | |
| 28 | 1 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → Ⅎ 𝑥 𝐻 ) |
| 29 | 4 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 = 𝐸 ) → 𝐶 = 𝐻 ) |
| 30 | 27 28 9 29 | csbiedf | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ⦋ 𝐸 / 𝑥 ⦌ 𝐶 = 𝐻 ) |
| 31 | 30 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ ⦋ 𝐸 / 𝑥 ⦌ 𝐶 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) |
| 32 | 26 31 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) = ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) |
| 33 | 32 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) ) |
| 34 | 23 33 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) ) |