This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptun.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| gsummptun.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| gsummptun.w | ⊢ ( 𝜑 → 𝑊 ∈ CMnd ) | ||
| gsummptun.a | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐶 ) ∈ Fin ) | ||
| gsummptun.d | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) = ∅ ) | ||
| gsummptun.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ) → 𝐷 ∈ 𝐵 ) | ||
| Assertion | gsummptun | ⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↦ 𝐷 ) ) = ( ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) + ( 𝑊 Σg ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptun.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | gsummptun.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | gsummptun.w | ⊢ ( 𝜑 → 𝑊 ∈ CMnd ) | |
| 4 | gsummptun.a | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐶 ) ∈ Fin ) | |
| 5 | gsummptun.d | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) = ∅ ) | |
| 6 | gsummptun.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ) → 𝐷 ∈ 𝐵 ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐶 ) = ( 𝐴 ∪ 𝐶 ) ) | |
| 8 | 1 2 3 4 6 5 7 | gsummptfidmsplit | ⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↦ 𝐷 ) ) = ( ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) + ( 𝑊 Σg ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) ) ) |