This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double group subtraction. (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | |- B = ( Base ` G ) |
|
| grpsubadd.p | |- .+ = ( +g ` G ) |
||
| grpsubadd.m | |- .- = ( -g ` G ) |
||
| Assertion | grpsubsub | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .- ( Y .- Z ) ) = ( X .+ ( Z .- Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | |- B = ( Base ` G ) |
|
| 2 | grpsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | simpr1 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 5 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( Y .- Z ) e. B ) |
| 6 | 5 | 3adant3r1 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .- Z ) e. B ) |
| 7 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 8 | 1 2 7 3 | grpsubval | |- ( ( X e. B /\ ( Y .- Z ) e. B ) -> ( X .- ( Y .- Z ) ) = ( X .+ ( ( invg ` G ) ` ( Y .- Z ) ) ) ) |
| 9 | 4 6 8 | syl2anc | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .- ( Y .- Z ) ) = ( X .+ ( ( invg ` G ) ` ( Y .- Z ) ) ) ) |
| 10 | 1 3 7 | grpinvsub | |- ( ( G e. Grp /\ Y e. B /\ Z e. B ) -> ( ( invg ` G ) ` ( Y .- Z ) ) = ( Z .- Y ) ) |
| 11 | 10 | 3adant3r1 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( invg ` G ) ` ( Y .- Z ) ) = ( Z .- Y ) ) |
| 12 | 11 | oveq2d | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .+ ( ( invg ` G ) ` ( Y .- Z ) ) ) = ( X .+ ( Z .- Y ) ) ) |
| 13 | 9 12 | eqtrd | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .- ( Y .- Z ) ) = ( X .+ ( Z .- Y ) ) ) |