This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right cancellation law for group subtraction. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubcl.b | |- B = ( Base ` G ) |
|
| grpsubcl.m | |- .- = ( -g ` G ) |
||
| Assertion | grpsubrcan | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Z ) = ( Y .- Z ) <-> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | |- B = ( Base ` G ) |
|
| 2 | grpsubcl.m | |- .- = ( -g ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 5 | 1 3 4 2 | grpsubval | |- ( ( X e. B /\ Z e. B ) -> ( X .- Z ) = ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 6 | 5 | 3adant2 | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( X .- Z ) = ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 7 | 1 3 4 2 | grpsubval | |- ( ( Y e. B /\ Z e. B ) -> ( Y .- Z ) = ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 8 | 7 | 3adant1 | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( Y .- Z ) = ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( ( X .- Z ) = ( Y .- Z ) <-> ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) = ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) ) |
| 10 | 9 | adantl | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Z ) = ( Y .- Z ) <-> ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) = ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) ) |
| 11 | simpl | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> G e. Grp ) |
|
| 12 | simpr1 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 13 | simpr2 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 14 | 1 4 | grpinvcl | |- ( ( G e. Grp /\ Z e. B ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 15 | 14 | 3ad2antr3 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 16 | 1 3 | grprcan | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ ( ( invg ` G ) ` Z ) e. B ) ) -> ( ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) = ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) <-> X = Y ) ) |
| 17 | 11 12 13 15 16 | syl13anc | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) = ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) <-> X = Y ) ) |
| 18 | 10 17 | bitrd | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Z ) = ( Y .- Z ) <-> X = Y ) ) |