This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpsubid.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| grpsubadd0sub.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | grpsubadd0sub | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( 0 − 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | grpsubid.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | grpsubadd0sub.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 6 | 1 4 5 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 8 | 1 3 5 2 | grpinvval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( 0 − 𝑌 ) ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( 0 − 𝑌 ) ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 + ( 0 − 𝑌 ) ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 + ( 0 − 𝑌 ) ) ) |