This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubid.b | |- B = ( Base ` G ) |
|
| grpsubid.o | |- .0. = ( 0g ` G ) |
||
| grpsubid.m | |- .- = ( -g ` G ) |
||
| grpsubadd0sub.p | |- .+ = ( +g ` G ) |
||
| Assertion | grpsubadd0sub | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( .0. .- Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubid.b | |- B = ( Base ` G ) |
|
| 2 | grpsubid.o | |- .0. = ( 0g ` G ) |
|
| 3 | grpsubid.m | |- .- = ( -g ` G ) |
|
| 4 | grpsubadd0sub.p | |- .+ = ( +g ` G ) |
|
| 5 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 6 | 1 4 5 3 | grpsubval | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( ( invg ` G ) ` Y ) ) ) |
| 7 | 6 | 3adant1 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( ( invg ` G ) ` Y ) ) ) |
| 8 | 1 3 5 2 | grpinvval2 | |- ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` Y ) = ( .0. .- Y ) ) |
| 9 | 8 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) = ( .0. .- Y ) ) |
| 10 | 9 | oveq2d | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( ( invg ` G ) ` Y ) ) = ( X .+ ( .0. .- Y ) ) ) |
| 11 | 7 10 | eqtrd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( .0. .- Y ) ) ) |