This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grplactf1o
Metamath Proof Explorer
Description: The left group action of element A of group G maps the
underlying set X of G one-to-one onto itself. (Contributed by Paul Chapman , 18-Mar-2008) (Proof shortened by Mario Carneiro , 14-Aug-2015)
Ref
Expression
Hypotheses
grplact.1
⊢ F = g ∈ X ⟼ a ∈ X ⟼ g + ˙ a
grplact.2
⊢ X = Base G
grplact.3
⊢ + ˙ = + G
Assertion
grplactf1o
⊢ G ∈ Grp ∧ A ∈ X → F ⁡ A : X ⟶ 1-1 onto X
Proof
Step
Hyp
Ref
Expression
1
grplact.1
⊢ F = g ∈ X ⟼ a ∈ X ⟼ g + ˙ a
2
grplact.2
⊢ X = Base G
3
grplact.3
⊢ + ˙ = + G
4
eqid
⊢ inv g ⁡ G = inv g ⁡ G
5
1 2 3 4
grplactcnv
⊢ G ∈ Grp ∧ A ∈ X → F ⁡ A : X ⟶ 1-1 onto X ∧ F ⁡ A -1 = F ⁡ inv g ⁡ G ⁡ A
6
5
simpld
⊢ G ∈ Grp ∧ A ∈ X → F ⁡ A : X ⟶ 1-1 onto X