This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of grpinv11 as of 8-Jul-2025. (Contributed by NM, 22-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| grpinv11.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| grpinv11.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| grpinv11.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | grpinv11OLD | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinvinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | grpinv11.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | grpinv11.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | grpinv11.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | fveq2 | ⊢ ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) |
| 8 | 1 2 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 9 | 3 4 8 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 11 | 1 2 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 12 | 3 5 11 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 14 | 7 10 13 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) |
| 15 | 14 | ex | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 16 | fveq2 | ⊢ ( 𝑋 = 𝑌 → ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) | |
| 17 | 15 16 | impbid1 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |