This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidrcan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpidrcan.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpidrcan.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpidrcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑍 ) = 𝑋 ↔ 𝑍 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidrcan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpidrcan.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpidrcan.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + 0 ) = 𝑋 ) |
| 6 | 5 | eqeq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑍 ) = ( 𝑋 + 0 ) ↔ ( 𝑋 + 𝑍 ) = 𝑋 ) ) |
| 7 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝐺 ∈ Grp ) | |
| 8 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ∈ 𝐵 ) | |
| 9 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 11 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | 1 2 | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑍 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑋 + 0 ) ↔ 𝑍 = 0 ) ) |
| 13 | 7 8 10 11 12 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑍 ) = ( 𝑋 + 0 ) ↔ 𝑍 = 0 ) ) |
| 14 | 6 13 | bitr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 + 𝑍 ) = 𝑋 ↔ 𝑍 = 0 ) ) |