This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grlimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| grlimprop2.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | ||
| grlimprop2.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | ||
| grlimprop2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| grlimprop2.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| grlimprop2.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | ||
| grlimprop2.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | ||
| Assertion | grlimprop2 | ⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grlimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | grlimprop2.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑣 ) | |
| 4 | grlimprop2.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx ( 𝐹 ‘ 𝑣 ) ) | |
| 5 | grlimprop2.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 6 | grlimprop2.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 7 | grlimprop2.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | |
| 8 | grlimprop2.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | |
| 9 | grlimdmrel | ⊢ Rel dom GraphLocIso | |
| 10 | 9 | ovrcl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 11 | id | ⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) | |
| 12 | df-3an | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ↔ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ) | |
| 13 | 10 11 12 | sylanbrc | ⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) ) |
| 14 | 1 2 3 4 5 6 7 8 | isgrlim2 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| 15 | 13 14 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) ) |
| 16 | 15 | ibi | ⊢ ( 𝐹 ∈ ( 𝐺 GraphLocIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∀ 𝑣 ∈ 𝑉 ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |