This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimprop.v | |- V = ( Vtx ` G ) |
|
| grlimprop.w | |- W = ( Vtx ` H ) |
||
| grlimprop2.n | |- N = ( G ClNeighbVtx v ) |
||
| grlimprop2.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
||
| grlimprop2.i | |- I = ( iEdg ` G ) |
||
| grlimprop2.j | |- J = ( iEdg ` H ) |
||
| grlimprop2.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
||
| grlimprop2.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
||
| Assertion | grlimprop2 | |- ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimprop.v | |- V = ( Vtx ` G ) |
|
| 2 | grlimprop.w | |- W = ( Vtx ` H ) |
|
| 3 | grlimprop2.n | |- N = ( G ClNeighbVtx v ) |
|
| 4 | grlimprop2.m | |- M = ( H ClNeighbVtx ( F ` v ) ) |
|
| 5 | grlimprop2.i | |- I = ( iEdg ` G ) |
|
| 6 | grlimprop2.j | |- J = ( iEdg ` H ) |
|
| 7 | grlimprop2.k | |- K = { x e. dom I | ( I ` x ) C_ N } |
|
| 8 | grlimprop2.l | |- L = { x e. dom J | ( J ` x ) C_ M } |
|
| 9 | grlimdmrel | |- Rel dom GraphLocIso |
|
| 10 | 9 | ovrcl | |- ( F e. ( G GraphLocIso H ) -> ( G e. _V /\ H e. _V ) ) |
| 11 | id | |- ( F e. ( G GraphLocIso H ) -> F e. ( G GraphLocIso H ) ) |
|
| 12 | df-3an | |- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) <-> ( ( G e. _V /\ H e. _V ) /\ F e. ( G GraphLocIso H ) ) ) |
|
| 13 | 10 11 12 | sylanbrc | |- ( F e. ( G GraphLocIso H ) -> ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) ) |
| 14 | 1 2 3 4 5 6 7 8 | isgrlim2 | |- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| 15 | 13 14 | syl | |- ( F e. ( G GraphLocIso H ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) ) |
| 16 | 15 | ibi | |- ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V E. f ( f : N -1-1-onto-> M /\ E. g ( g : K -1-1-onto-> L /\ A. i e. K ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |