This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | goeleq12bg | |- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( ( I e.g J ) = ( M e.g N ) <-> ( I = M /\ J = N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | goel | |- ( ( I e. _om /\ J e. _om ) -> ( I e.g J ) = <. (/) , <. I , J >. >. ) |
|
| 2 | goel | |- ( ( M e. _om /\ N e. _om ) -> ( M e.g N ) = <. (/) , <. M , N >. >. ) |
|
| 3 | 1 2 | eqeqan12rd | |- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( ( I e.g J ) = ( M e.g N ) <-> <. (/) , <. I , J >. >. = <. (/) , <. M , N >. >. ) ) |
| 4 | 0ex | |- (/) e. _V |
|
| 5 | opex | |- <. I , J >. e. _V |
|
| 6 | 4 5 | opth | |- ( <. (/) , <. I , J >. >. = <. (/) , <. M , N >. >. <-> ( (/) = (/) /\ <. I , J >. = <. M , N >. ) ) |
| 7 | eqid | |- (/) = (/) |
|
| 8 | 7 | biantrur | |- ( <. I , J >. = <. M , N >. <-> ( (/) = (/) /\ <. I , J >. = <. M , N >. ) ) |
| 9 | opthg | |- ( ( I e. _om /\ J e. _om ) -> ( <. I , J >. = <. M , N >. <-> ( I = M /\ J = N ) ) ) |
|
| 10 | 9 | adantl | |- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( <. I , J >. = <. M , N >. <-> ( I = M /\ J = N ) ) ) |
| 11 | 8 10 | bitr3id | |- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( ( (/) = (/) /\ <. I , J >. = <. M , N >. ) <-> ( I = M /\ J = N ) ) ) |
| 12 | 6 11 | bitrid | |- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( <. (/) , <. I , J >. >. = <. (/) , <. M , N >. >. <-> ( I = M /\ J = N ) ) ) |
| 13 | 3 12 | bitrd | |- ( ( ( M e. _om /\ N e. _om ) /\ ( I e. _om /\ J e. _om ) ) -> ( ( I e.g J ) = ( M e.g N ) <-> ( I = M /\ J = N ) ) ) |