This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubeldm2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lubeldm2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| glbeldm2.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| glbeldm2.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | ||
| glbeldm2.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| Assertion | glbeldm2 | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubeldm2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lubeldm2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | glbeldm2.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | glbeldm2.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 5 | glbeldm2.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 6 | 1 2 3 4 5 | glbeldm | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) ) |
| 7 | 6 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
| 8 | reurex | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 → ∃ 𝑥 ∈ 𝐵 𝜓 ) | |
| 9 | 8 | anim2i | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) → ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 10 | 7 9 | syl | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ dom 𝐺 ) → ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 11 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) → 𝜑 ) | |
| 12 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) → 𝑆 ⊆ 𝐵 ) | |
| 13 | 2 1 | posglbmo | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 14 | 5 13 | sylan | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 15 | 4 | rmobii | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜓 ↔ ∃* 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 16 | 14 15 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ 𝐵 ) → ∃* 𝑥 ∈ 𝐵 𝜓 ) |
| 17 | 16 | anim1ci | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) → ( ∃ 𝑥 ∈ 𝐵 𝜓 ∧ ∃* 𝑥 ∈ 𝐵 𝜓 ) ) |
| 18 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ( ∃ 𝑥 ∈ 𝐵 𝜓 ∧ ∃* 𝑥 ∈ 𝐵 𝜓 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑆 ⊆ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) → ∃! 𝑥 ∈ 𝐵 𝜓 ) |
| 20 | 19 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) → ∃! 𝑥 ∈ 𝐵 𝜓 ) |
| 21 | 6 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) → 𝑆 ∈ dom 𝐺 ) |
| 22 | 11 12 20 21 | syl12anc | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) → 𝑆 ∈ dom 𝐺 ) |
| 23 | 10 22 | impbida | ⊢ ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ↔ ( 𝑆 ⊆ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 𝜓 ) ) ) |