This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function fulfilling the conditions of ghmgrp is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmabl.x | ||
| ghmabl.y | |||
| ghmabl.p | |||
| ghmabl.q | |||
| ghmabl.f | |||
| ghmabl.1 | |||
| ghmfghm.3 | |||
| Assertion | ghmfghm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.x | ||
| 2 | ghmabl.y | ||
| 3 | ghmabl.p | ||
| 4 | ghmabl.q | ||
| 5 | ghmabl.f | ||
| 6 | ghmabl.1 | ||
| 7 | ghmfghm.3 | ||
| 8 | 5 1 2 3 4 6 7 | ghmgrp | |
| 9 | fof | ||
| 10 | 6 9 | syl | |
| 11 | 5 | 3expb | |
| 12 | 1 2 3 4 7 8 10 11 | isghmd |