This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| Assertion | genpdm | ⊢ dom 𝐹 = ( P × P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | elprnq | ⊢ ( ( 𝑤 ∈ P ∧ 𝑦 ∈ 𝑤 ) → 𝑦 ∈ Q ) | |
| 4 | elprnq | ⊢ ( ( 𝑣 ∈ P ∧ 𝑧 ∈ 𝑣 ) → 𝑧 ∈ Q ) | |
| 5 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → ( 𝑥 ∈ Q ↔ ( 𝑦 𝐺 𝑧 ) ∈ Q ) ) | |
| 6 | 2 5 | syl5ibrcom | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
| 7 | 3 4 6 | syl2an | ⊢ ( ( ( 𝑤 ∈ P ∧ 𝑦 ∈ 𝑤 ) ∧ ( 𝑣 ∈ P ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
| 8 | 7 | an4s | ⊢ ( ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
| 9 | 8 | rexlimdvva | ⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → ( ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
| 10 | 9 | abssdv | ⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q ) |
| 11 | nqex | ⊢ Q ∈ V | |
| 12 | ssexg | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q ∧ Q ∈ V ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) |
| 14 | 13 | rgen2 | ⊢ ∀ 𝑤 ∈ P ∀ 𝑣 ∈ P { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V |
| 15 | 1 | fnmpo | ⊢ ( ∀ 𝑤 ∈ P ∀ 𝑣 ∈ P { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V → 𝐹 Fn ( P × P ) ) |
| 16 | fndm | ⊢ ( 𝐹 Fn ( P × P ) → dom 𝐹 = ( P × P ) ) | |
| 17 | 14 15 16 | mp2b | ⊢ dom 𝐹 = ( P × P ) |