This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996) (Proof shortened by Andrew Salmon, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gencbvex.1 | |- A e. _V |
|
| gencbvex.2 | |- ( A = y -> ( ph <-> ps ) ) |
||
| gencbvex.3 | |- ( A = y -> ( ch <-> th ) ) |
||
| gencbvex.4 | |- ( th <-> E. x ( ch /\ A = y ) ) |
||
| Assertion | gencbvex | |- ( E. x ( ch /\ ph ) <-> E. y ( th /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gencbvex.1 | |- A e. _V |
|
| 2 | gencbvex.2 | |- ( A = y -> ( ph <-> ps ) ) |
|
| 3 | gencbvex.3 | |- ( A = y -> ( ch <-> th ) ) |
|
| 4 | gencbvex.4 | |- ( th <-> E. x ( ch /\ A = y ) ) |
|
| 5 | excom | |- ( E. x E. y ( y = A /\ ( th /\ ps ) ) <-> E. y E. x ( y = A /\ ( th /\ ps ) ) ) |
|
| 6 | 3 2 | anbi12d | |- ( A = y -> ( ( ch /\ ph ) <-> ( th /\ ps ) ) ) |
| 7 | 6 | bicomd | |- ( A = y -> ( ( th /\ ps ) <-> ( ch /\ ph ) ) ) |
| 8 | 7 | eqcoms | |- ( y = A -> ( ( th /\ ps ) <-> ( ch /\ ph ) ) ) |
| 9 | 1 8 | ceqsexv | |- ( E. y ( y = A /\ ( th /\ ps ) ) <-> ( ch /\ ph ) ) |
| 10 | 9 | exbii | |- ( E. x E. y ( y = A /\ ( th /\ ps ) ) <-> E. x ( ch /\ ph ) ) |
| 11 | 19.41v | |- ( E. x ( y = A /\ ( th /\ ps ) ) <-> ( E. x y = A /\ ( th /\ ps ) ) ) |
|
| 12 | simpr | |- ( ( E. x y = A /\ ( th /\ ps ) ) -> ( th /\ ps ) ) |
|
| 13 | eqcom | |- ( A = y <-> y = A ) |
|
| 14 | 13 | biimpi | |- ( A = y -> y = A ) |
| 15 | 14 | adantl | |- ( ( ch /\ A = y ) -> y = A ) |
| 16 | 15 | eximi | |- ( E. x ( ch /\ A = y ) -> E. x y = A ) |
| 17 | 4 16 | sylbi | |- ( th -> E. x y = A ) |
| 18 | 17 | adantr | |- ( ( th /\ ps ) -> E. x y = A ) |
| 19 | 18 | ancri | |- ( ( th /\ ps ) -> ( E. x y = A /\ ( th /\ ps ) ) ) |
| 20 | 12 19 | impbii | |- ( ( E. x y = A /\ ( th /\ ps ) ) <-> ( th /\ ps ) ) |
| 21 | 11 20 | bitri | |- ( E. x ( y = A /\ ( th /\ ps ) ) <-> ( th /\ ps ) ) |
| 22 | 21 | exbii | |- ( E. y E. x ( y = A /\ ( th /\ ps ) ) <-> E. y ( th /\ ps ) ) |
| 23 | 5 10 22 | 3bitr3i | |- ( E. x ( ch /\ ph ) <-> E. y ( th /\ ps ) ) |