This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge0p1rp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2re | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 3 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ∈ ℝ ) | |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ 𝐴 ) | |
| 6 | ltp1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 < ( 𝐴 + 1 ) ) |
| 8 | 3 4 2 5 7 | lelttrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 < ( 𝐴 + 1 ) ) |
| 9 | elrp | ⊢ ( ( 𝐴 + 1 ) ∈ ℝ+ ↔ ( ( 𝐴 + 1 ) ∈ ℝ ∧ 0 < ( 𝐴 + 1 ) ) ) | |
| 10 | 2 8 9 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 + 1 ) ∈ ℝ+ ) |