This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdi.1 | ⊢ 𝐾 ∈ ℕ0 | |
| gcdi.2 | ⊢ 𝑅 ∈ ℕ0 | ||
| gcdi.3 | ⊢ 𝑁 ∈ ℕ0 | ||
| gcdi.5 | ⊢ ( 𝑁 gcd 𝑅 ) = 𝐺 | ||
| gcdi.4 | ⊢ ( ( 𝐾 · 𝑁 ) + 𝑅 ) = 𝑀 | ||
| Assertion | gcdi | ⊢ ( 𝑀 gcd 𝑁 ) = 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdi.1 | ⊢ 𝐾 ∈ ℕ0 | |
| 2 | gcdi.2 | ⊢ 𝑅 ∈ ℕ0 | |
| 3 | gcdi.3 | ⊢ 𝑁 ∈ ℕ0 | |
| 4 | gcdi.5 | ⊢ ( 𝑁 gcd 𝑅 ) = 𝐺 | |
| 5 | gcdi.4 | ⊢ ( ( 𝐾 · 𝑁 ) + 𝑅 ) = 𝑀 | |
| 6 | 1 3 | nn0mulcli | ⊢ ( 𝐾 · 𝑁 ) ∈ ℕ0 |
| 7 | 6 | nn0cni | ⊢ ( 𝐾 · 𝑁 ) ∈ ℂ |
| 8 | 2 | nn0cni | ⊢ 𝑅 ∈ ℂ |
| 9 | 7 8 5 | addcomli | ⊢ ( 𝑅 + ( 𝐾 · 𝑁 ) ) = 𝑀 |
| 10 | 9 | oveq2i | ⊢ ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) = ( 𝑁 gcd 𝑀 ) |
| 11 | 1 | nn0zi | ⊢ 𝐾 ∈ ℤ |
| 12 | 3 | nn0zi | ⊢ 𝑁 ∈ ℤ |
| 13 | 2 | nn0zi | ⊢ 𝑅 ∈ ℤ |
| 14 | gcdaddm | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( 𝑁 gcd 𝑅 ) = ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) ) | |
| 15 | 11 12 13 14 | mp3an | ⊢ ( 𝑁 gcd 𝑅 ) = ( 𝑁 gcd ( 𝑅 + ( 𝐾 · 𝑁 ) ) ) |
| 16 | 1 3 2 | numcl | ⊢ ( ( 𝐾 · 𝑁 ) + 𝑅 ) ∈ ℕ0 |
| 17 | 5 16 | eqeltrri | ⊢ 𝑀 ∈ ℕ0 |
| 18 | 17 | nn0zi | ⊢ 𝑀 ∈ ℤ |
| 19 | gcdcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) ) | |
| 20 | 18 12 19 | mp2an | ⊢ ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) |
| 21 | 10 15 20 | 3eqtr4i | ⊢ ( 𝑁 gcd 𝑅 ) = ( 𝑀 gcd 𝑁 ) |
| 22 | 21 4 | eqtr3i | ⊢ ( 𝑀 gcd 𝑁 ) = 𝐺 |