This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdi.1 | ||
| gcdi.2 | |||
| gcdi.3 | |||
| gcdi.5 | |||
| gcdi.4 | |||
| Assertion | gcdi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdi.1 | ||
| 2 | gcdi.2 | ||
| 3 | gcdi.3 | ||
| 4 | gcdi.5 | ||
| 5 | gcdi.4 | ||
| 6 | 1 3 | nn0mulcli | |
| 7 | 6 | nn0cni | |
| 8 | 2 | nn0cni | |
| 9 | 7 8 5 | addcomli | |
| 10 | 9 | oveq2i | |
| 11 | 1 | nn0zi | |
| 12 | 3 | nn0zi | |
| 13 | 2 | nn0zi | |
| 14 | gcdaddm | ||
| 15 | 11 12 13 14 | mp3an | |
| 16 | 1 3 2 | numcl | |
| 17 | 5 16 | eqeltrri | |
| 18 | 17 | nn0zi | |
| 19 | gcdcom | ||
| 20 | 18 12 19 | mp2an | |
| 21 | 10 15 20 | 3eqtr4i | |
| 22 | 21 4 | eqtr3i |