This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdabs2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd ( abs ‘ 𝑀 ) ) = ( 𝑁 gcd 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdabs1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
| 3 | zabscl | ⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) ∈ ℤ ) | |
| 4 | gcdcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( abs ‘ 𝑀 ) ∈ ℤ ) → ( 𝑁 gcd ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd 𝑁 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd ( abs ‘ 𝑀 ) ) = ( ( abs ‘ 𝑀 ) gcd 𝑁 ) ) |
| 6 | gcdcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) | |
| 7 | 2 5 6 | 3eqtr4d | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd ( abs ‘ 𝑀 ) ) = ( 𝑁 gcd 𝑀 ) ) |