This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosubel2 | ⊢ ( ( 𝐴 ∈ ( ( 𝐵 + 𝐶 ) ..^ ( 𝐵 + 𝐷 ) ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ) → ( 𝐴 − 𝐵 ) ∈ ( 𝐶 ..^ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosubel | ⊢ ( ( 𝐴 ∈ ( ( 𝐵 + 𝐶 ) ..^ ( 𝐵 + 𝐷 ) ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ( ( ( 𝐵 + 𝐶 ) − 𝐵 ) ..^ ( ( 𝐵 + 𝐷 ) − 𝐵 ) ) ) | |
| 2 | 1 | 3ad2antr1 | ⊢ ( ( 𝐴 ∈ ( ( 𝐵 + 𝐶 ) ..^ ( 𝐵 + 𝐷 ) ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ) → ( 𝐴 − 𝐵 ) ∈ ( ( ( 𝐵 + 𝐶 ) − 𝐵 ) ..^ ( ( 𝐵 + 𝐷 ) − 𝐵 ) ) ) |
| 3 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 4 | zcn | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) | |
| 5 | zcn | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ ) | |
| 6 | pncan2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐶 ) − 𝐵 ) = 𝐶 ) | |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐵 + 𝐶 ) − 𝐵 ) = 𝐶 ) |
| 8 | pncan2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐵 + 𝐷 ) − 𝐵 ) = 𝐷 ) | |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 𝐵 + 𝐷 ) − 𝐵 ) = 𝐷 ) |
| 10 | 7 9 | oveq12d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 𝐵 + 𝐶 ) − 𝐵 ) ..^ ( ( 𝐵 + 𝐷 ) − 𝐵 ) ) = ( 𝐶 ..^ 𝐷 ) ) |
| 11 | 3 4 5 10 | syl3an | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( ( ( 𝐵 + 𝐶 ) − 𝐵 ) ..^ ( ( 𝐵 + 𝐷 ) − 𝐵 ) ) = ( 𝐶 ..^ 𝐷 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ( ( 𝐵 + 𝐶 ) ..^ ( 𝐵 + 𝐷 ) ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ) → ( ( ( 𝐵 + 𝐶 ) − 𝐵 ) ..^ ( ( 𝐵 + 𝐷 ) − 𝐵 ) ) = ( 𝐶 ..^ 𝐷 ) ) |
| 13 | 2 12 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( ( 𝐵 + 𝐶 ) ..^ ( 𝐵 + 𝐷 ) ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ) → ( 𝐴 − 𝐵 ) ∈ ( 𝐶 ..^ 𝐷 ) ) |