This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzonmapblen | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐵 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐵 < 𝐴 ) → ( 𝐵 + ( 𝑁 − 𝐴 ) ) < 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁 ) ) | |
| 2 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 3 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 4 | 2 3 | anim12i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐴 < 𝑁 ) → ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 6 | 1 5 | sylbi | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝑁 ) → ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 7 | elfzoelz | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝑁 ) → 𝐵 ∈ ℤ ) | |
| 8 | 7 | zred | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝑁 ) → 𝐵 ∈ ℝ ) |
| 9 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 10 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 11 | resubcl | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 − 𝐴 ) ∈ ℝ ) | |
| 12 | 11 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑁 − 𝐴 ) ∈ ℝ ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( 𝑁 − 𝐴 ) ∈ ℝ ) |
| 14 | 9 10 13 | ltadd1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ( 𝐵 + ( 𝑁 − 𝐴 ) ) < ( 𝐴 + ( 𝑁 − 𝐴 ) ) ) ) |
| 15 | 14 | biimpa | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐵 + ( 𝑁 − 𝐴 ) ) < ( 𝐴 + ( 𝑁 − 𝐴 ) ) ) |
| 16 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 17 | recn | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℂ ) | |
| 18 | 16 17 | anim12i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 21 | pncan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐴 + ( 𝑁 − 𝐴 ) ) = 𝑁 ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 + ( 𝑁 − 𝐴 ) ) = 𝑁 ) |
| 23 | 15 22 | breqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐵 + ( 𝑁 − 𝐴 ) ) < 𝑁 ) |
| 24 | 23 | ex | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 → ( 𝐵 + ( 𝑁 − 𝐴 ) ) < 𝑁 ) ) |
| 25 | 6 8 24 | syl2an | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐵 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 < 𝐴 → ( 𝐵 + ( 𝑁 − 𝐴 ) ) < 𝑁 ) ) |
| 26 | 25 | 3impia | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐵 ∈ ( 0 ..^ 𝑁 ) ∧ 𝐵 < 𝐴 ) → ( 𝐵 + ( 𝑁 − 𝐴 ) ) < 𝑁 ) |