This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzonmapblen | |- ( ( A e. ( 0 ..^ N ) /\ B e. ( 0 ..^ N ) /\ B < A ) -> ( B + ( N - A ) ) < N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | |- ( A e. ( 0 ..^ N ) <-> ( A e. NN0 /\ N e. NN /\ A < N ) ) |
|
| 2 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 3 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 4 | 2 3 | anim12i | |- ( ( A e. NN0 /\ N e. NN ) -> ( A e. RR /\ N e. RR ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. NN0 /\ N e. NN /\ A < N ) -> ( A e. RR /\ N e. RR ) ) |
| 6 | 1 5 | sylbi | |- ( A e. ( 0 ..^ N ) -> ( A e. RR /\ N e. RR ) ) |
| 7 | elfzoelz | |- ( B e. ( 0 ..^ N ) -> B e. ZZ ) |
|
| 8 | 7 | zred | |- ( B e. ( 0 ..^ N ) -> B e. RR ) |
| 9 | simpr | |- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> B e. RR ) |
|
| 10 | simpll | |- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> A e. RR ) |
|
| 11 | resubcl | |- ( ( N e. RR /\ A e. RR ) -> ( N - A ) e. RR ) |
|
| 12 | 11 | ancoms | |- ( ( A e. RR /\ N e. RR ) -> ( N - A ) e. RR ) |
| 13 | 12 | adantr | |- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( N - A ) e. RR ) |
| 14 | 9 10 13 | ltadd1d | |- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( B < A <-> ( B + ( N - A ) ) < ( A + ( N - A ) ) ) ) |
| 15 | 14 | biimpa | |- ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( B + ( N - A ) ) < ( A + ( N - A ) ) ) |
| 16 | recn | |- ( A e. RR -> A e. CC ) |
|
| 17 | recn | |- ( N e. RR -> N e. CC ) |
|
| 18 | 16 17 | anim12i | |- ( ( A e. RR /\ N e. RR ) -> ( A e. CC /\ N e. CC ) ) |
| 19 | 18 | adantr | |- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( A e. CC /\ N e. CC ) ) |
| 20 | 19 | adantr | |- ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( A e. CC /\ N e. CC ) ) |
| 21 | pncan3 | |- ( ( A e. CC /\ N e. CC ) -> ( A + ( N - A ) ) = N ) |
|
| 22 | 20 21 | syl | |- ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( A + ( N - A ) ) = N ) |
| 23 | 15 22 | breqtrd | |- ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( B + ( N - A ) ) < N ) |
| 24 | 23 | ex | |- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( B < A -> ( B + ( N - A ) ) < N ) ) |
| 25 | 6 8 24 | syl2an | |- ( ( A e. ( 0 ..^ N ) /\ B e. ( 0 ..^ N ) ) -> ( B < A -> ( B + ( N - A ) ) < N ) ) |
| 26 | 25 | 3impia | |- ( ( A e. ( 0 ..^ N ) /\ B e. ( 0 ..^ N ) /\ B < A ) -> ( B + ( N - A ) ) < N ) |