This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfz1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzval | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐾 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) } ) ) |
| 3 | breq2 | ⊢ ( 𝑗 = 𝐾 → ( 𝑀 ≤ 𝑗 ↔ 𝑀 ≤ 𝐾 ) ) | |
| 4 | breq1 | ⊢ ( 𝑗 = 𝐾 → ( 𝑗 ≤ 𝑁 ↔ 𝐾 ≤ 𝑁 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑗 = 𝐾 → ( ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) ↔ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 6 | 5 | elrab | ⊢ ( 𝐾 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) } ↔ ( 𝐾 ∈ ℤ ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 7 | 3anass | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( 𝐾 ∈ { 𝑗 ∈ ℤ ∣ ( 𝑀 ≤ 𝑗 ∧ 𝑗 ≤ 𝑁 ) } ↔ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) |
| 9 | 2 8 | bitrdi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |