This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fzindd.1 | |- ( x = M -> ( ps <-> ch ) ) |
|
| fzindd.2 | |- ( x = y -> ( ps <-> th ) ) |
||
| fzindd.3 | |- ( x = ( y + 1 ) -> ( ps <-> ta ) ) |
||
| fzindd.4 | |- ( x = A -> ( ps <-> et ) ) |
||
| fzindd.5 | |- ( ph -> ch ) |
||
| fzindd.6 | |- ( ( ph /\ ( y e. ZZ /\ M <_ y /\ y < N ) /\ th ) -> ta ) |
||
| fzindd.7 | |- ( ph -> M e. ZZ ) |
||
| fzindd.8 | |- ( ph -> N e. ZZ ) |
||
| fzindd.9 | |- ( ph -> M <_ N ) |
||
| Assertion | fzindd | |- ( ( ph /\ ( A e. ZZ /\ M <_ A /\ A <_ N ) ) -> et ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzindd.1 | |- ( x = M -> ( ps <-> ch ) ) |
|
| 2 | fzindd.2 | |- ( x = y -> ( ps <-> th ) ) |
|
| 3 | fzindd.3 | |- ( x = ( y + 1 ) -> ( ps <-> ta ) ) |
|
| 4 | fzindd.4 | |- ( x = A -> ( ps <-> et ) ) |
|
| 5 | fzindd.5 | |- ( ph -> ch ) |
|
| 6 | fzindd.6 | |- ( ( ph /\ ( y e. ZZ /\ M <_ y /\ y < N ) /\ th ) -> ta ) |
|
| 7 | fzindd.7 | |- ( ph -> M e. ZZ ) |
|
| 8 | fzindd.8 | |- ( ph -> N e. ZZ ) |
|
| 9 | fzindd.9 | |- ( ph -> M <_ N ) |
|
| 10 | 7 8 | jca | |- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
| 11 | 1 | imbi2d | |- ( x = M -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
| 12 | 2 | imbi2d | |- ( x = y -> ( ( ph -> ps ) <-> ( ph -> th ) ) ) |
| 13 | 3 | imbi2d | |- ( x = ( y + 1 ) -> ( ( ph -> ps ) <-> ( ph -> ta ) ) ) |
| 14 | 4 | imbi2d | |- ( x = A -> ( ( ph -> ps ) <-> ( ph -> et ) ) ) |
| 15 | 5 | a1i | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( ph -> ch ) ) |
| 16 | 6 | 3expa | |- ( ( ( ph /\ ( y e. ZZ /\ M <_ y /\ y < N ) ) /\ th ) -> ta ) |
| 17 | 16 | ex | |- ( ( ph /\ ( y e. ZZ /\ M <_ y /\ y < N ) ) -> ( th -> ta ) ) |
| 18 | 17 | expcom | |- ( ( y e. ZZ /\ M <_ y /\ y < N ) -> ( ph -> ( th -> ta ) ) ) |
| 19 | 18 | a2d | |- ( ( y e. ZZ /\ M <_ y /\ y < N ) -> ( ( ph -> th ) -> ( ph -> ta ) ) ) |
| 20 | 19 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( y e. ZZ /\ M <_ y /\ y < N ) ) -> ( ( ph -> th ) -> ( ph -> ta ) ) ) |
| 21 | 11 12 13 14 15 20 | fzind | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( A e. ZZ /\ M <_ A /\ A <_ N ) ) -> ( ph -> et ) ) |
| 22 | 10 21 | sylan | |- ( ( ph /\ ( A e. ZZ /\ M <_ A /\ A <_ N ) ) -> ( ph -> et ) ) |
| 23 | 22 | imp | |- ( ( ( ph /\ ( A e. ZZ /\ M <_ A /\ A <_ N ) ) /\ ph ) -> et ) |
| 24 | 23 | anabss1 | |- ( ( ph /\ ( A e. ZZ /\ M <_ A /\ A <_ N ) ) -> et ) |