This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014) (Revised by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzctr | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 2 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 3 | nn0addge1 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑁 + 𝑁 ) ) | |
| 4 | 2 3 | mpancom | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ≤ ( 𝑁 + 𝑁 ) ) |
| 5 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 6 | 5 | 2timesd | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
| 7 | 4 6 | breqtrrd | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ≤ ( 2 · 𝑁 ) ) |
| 8 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 9 | 0zd | ⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ℤ ) | |
| 10 | 2z | ⊢ 2 ∈ ℤ | |
| 11 | zmulcl | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 · 𝑁 ) ∈ ℤ ) | |
| 12 | 10 8 11 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 · 𝑁 ) ∈ ℤ ) |
| 13 | elfz | ⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ ( 2 · 𝑁 ) ∈ ℤ ) → ( 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) ↔ ( 0 ≤ 𝑁 ∧ 𝑁 ≤ ( 2 · 𝑁 ) ) ) ) | |
| 14 | 8 9 12 13 | syl3anc | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) ↔ ( 0 ≤ 𝑁 ∧ 𝑁 ≤ ( 2 · 𝑁 ) ) ) ) |
| 15 | 1 7 14 | mpbir2and | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 ... ( 2 · 𝑁 ) ) ) |