This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014) (Revised by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzctr | |- ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 2 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 3 | nn0addge1 | |- ( ( N e. RR /\ N e. NN0 ) -> N <_ ( N + N ) ) |
|
| 4 | 2 3 | mpancom | |- ( N e. NN0 -> N <_ ( N + N ) ) |
| 5 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 6 | 5 | 2timesd | |- ( N e. NN0 -> ( 2 x. N ) = ( N + N ) ) |
| 7 | 4 6 | breqtrrd | |- ( N e. NN0 -> N <_ ( 2 x. N ) ) |
| 8 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 9 | 0zd | |- ( N e. NN0 -> 0 e. ZZ ) |
|
| 10 | 2z | |- 2 e. ZZ |
|
| 11 | zmulcl | |- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) |
|
| 12 | 10 8 11 | sylancr | |- ( N e. NN0 -> ( 2 x. N ) e. ZZ ) |
| 13 | elfz | |- ( ( N e. ZZ /\ 0 e. ZZ /\ ( 2 x. N ) e. ZZ ) -> ( N e. ( 0 ... ( 2 x. N ) ) <-> ( 0 <_ N /\ N <_ ( 2 x. N ) ) ) ) |
|
| 14 | 8 9 12 13 | syl3anc | |- ( N e. NN0 -> ( N e. ( 0 ... ( 2 x. N ) ) <-> ( 0 <_ N /\ N <_ ( 2 x. N ) ) ) ) |
| 15 | 1 7 14 | mpbir2and | |- ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |