This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 25-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvsnun.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| fvsnun.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| fvsnun.3 | ⊢ 𝐺 = ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) | ||
| fvsnun2.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 ∖ { 𝐴 } ) ) | ||
| Assertion | fvsnun2 | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | fvsnun.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | fvsnun.3 | ⊢ 𝐺 = ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) | |
| 4 | fvsnun2.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 ∖ { 𝐴 } ) ) | |
| 5 | 3 | reseq1i | ⊢ ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
| 7 | resundir | ⊢ ( ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ( { 〈 𝐴 , 𝐵 〉 } ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ) |
| 9 | disjdif | ⊢ ( { 𝐴 } ∩ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ | |
| 10 | fnsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 〈 𝐴 , 𝐵 〉 } Fn { 𝐴 } ) | |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝜑 → { 〈 𝐴 , 𝐵 〉 } Fn { 𝐴 } ) |
| 12 | fnresdisj | ⊢ ( { 〈 𝐴 , 𝐵 〉 } Fn { 𝐴 } → ( ( { 𝐴 } ∩ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ↔ ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( ( { 𝐴 } ∩ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ↔ ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ) ) |
| 14 | 9 13 | mpbii | ⊢ ( 𝜑 → ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ∅ ) |
| 15 | residm | ⊢ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
| 17 | 14 16 | uneq12d | ⊢ ( 𝜑 → ( ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) = ( ∅ ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) ) |
| 18 | uncom | ⊢ ( ∅ ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ∅ ) | |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ( ∅ ∪ ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ∅ ) ) |
| 20 | un0 | ⊢ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ∅ ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) | |
| 21 | 20 | a1i | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ∅ ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
| 22 | 17 19 21 | 3eqtrd | ⊢ ( 𝜑 → ( ( { 〈 𝐴 , 𝐵 〉 } ↾ ( 𝐶 ∖ { 𝐴 } ) ) ∪ ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
| 23 | 6 8 22 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) = ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ) |
| 24 | 23 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) = ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) ) |
| 25 | 4 | fvresd | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) = ( 𝐺 ‘ 𝐷 ) ) |
| 26 | 4 | fvresd | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 ∖ { 𝐴 } ) ) ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |
| 27 | 24 25 26 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |