This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 25-Feb-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvsnun.1 | |- ( ph -> A e. V ) |
|
| fvsnun.2 | |- ( ph -> B e. W ) |
||
| fvsnun.3 | |- G = ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |
||
| fvsnun2.4 | |- ( ph -> D e. ( C \ { A } ) ) |
||
| Assertion | fvsnun2 | |- ( ph -> ( G ` D ) = ( F ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.1 | |- ( ph -> A e. V ) |
|
| 2 | fvsnun.2 | |- ( ph -> B e. W ) |
|
| 3 | fvsnun.3 | |- G = ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |
|
| 4 | fvsnun2.4 | |- ( ph -> D e. ( C \ { A } ) ) |
|
| 5 | 3 | reseq1i | |- ( G |` ( C \ { A } ) ) = ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` ( C \ { A } ) ) |
| 6 | 5 | a1i | |- ( ph -> ( G |` ( C \ { A } ) ) = ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` ( C \ { A } ) ) ) |
| 7 | resundir | |- ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` ( C \ { A } ) ) = ( ( { <. A , B >. } |` ( C \ { A } ) ) u. ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) ) |
|
| 8 | 7 | a1i | |- ( ph -> ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` ( C \ { A } ) ) = ( ( { <. A , B >. } |` ( C \ { A } ) ) u. ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) ) ) |
| 9 | disjdif | |- ( { A } i^i ( C \ { A } ) ) = (/) |
|
| 10 | fnsng | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. } Fn { A } ) |
|
| 11 | 1 2 10 | syl2anc | |- ( ph -> { <. A , B >. } Fn { A } ) |
| 12 | fnresdisj | |- ( { <. A , B >. } Fn { A } -> ( ( { A } i^i ( C \ { A } ) ) = (/) <-> ( { <. A , B >. } |` ( C \ { A } ) ) = (/) ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( ( { A } i^i ( C \ { A } ) ) = (/) <-> ( { <. A , B >. } |` ( C \ { A } ) ) = (/) ) ) |
| 14 | 9 13 | mpbii | |- ( ph -> ( { <. A , B >. } |` ( C \ { A } ) ) = (/) ) |
| 15 | residm | |- ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) = ( F |` ( C \ { A } ) ) |
|
| 16 | 15 | a1i | |- ( ph -> ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) = ( F |` ( C \ { A } ) ) ) |
| 17 | 14 16 | uneq12d | |- ( ph -> ( ( { <. A , B >. } |` ( C \ { A } ) ) u. ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) ) = ( (/) u. ( F |` ( C \ { A } ) ) ) ) |
| 18 | uncom | |- ( (/) u. ( F |` ( C \ { A } ) ) ) = ( ( F |` ( C \ { A } ) ) u. (/) ) |
|
| 19 | 18 | a1i | |- ( ph -> ( (/) u. ( F |` ( C \ { A } ) ) ) = ( ( F |` ( C \ { A } ) ) u. (/) ) ) |
| 20 | un0 | |- ( ( F |` ( C \ { A } ) ) u. (/) ) = ( F |` ( C \ { A } ) ) |
|
| 21 | 20 | a1i | |- ( ph -> ( ( F |` ( C \ { A } ) ) u. (/) ) = ( F |` ( C \ { A } ) ) ) |
| 22 | 17 19 21 | 3eqtrd | |- ( ph -> ( ( { <. A , B >. } |` ( C \ { A } ) ) u. ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) ) = ( F |` ( C \ { A } ) ) ) |
| 23 | 6 8 22 | 3eqtrd | |- ( ph -> ( G |` ( C \ { A } ) ) = ( F |` ( C \ { A } ) ) ) |
| 24 | 23 | fveq1d | |- ( ph -> ( ( G |` ( C \ { A } ) ) ` D ) = ( ( F |` ( C \ { A } ) ) ` D ) ) |
| 25 | 4 | fvresd | |- ( ph -> ( ( G |` ( C \ { A } ) ) ` D ) = ( G ` D ) ) |
| 26 | 4 | fvresd | |- ( ph -> ( ( F |` ( C \ { A } ) ) ` D ) = ( F ` D ) ) |
| 27 | 24 25 26 | 3eqtr3d | |- ( ph -> ( G ` D ) = ( F ` D ) ) |