This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvsetsid | |- ( ( F e. V /\ X e. W /\ Y e. U ) -> ( ( F sSet <. X , Y >. ) ` X ) = Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsval | |- ( ( F e. V /\ Y e. U ) -> ( F sSet <. X , Y >. ) = ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) ) |
|
| 2 | 1 | 3adant2 | |- ( ( F e. V /\ X e. W /\ Y e. U ) -> ( F sSet <. X , Y >. ) = ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) ) |
| 3 | 2 | fveq1d | |- ( ( F e. V /\ X e. W /\ Y e. U ) -> ( ( F sSet <. X , Y >. ) ` X ) = ( ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) ` X ) ) |
| 4 | simp2 | |- ( ( F e. V /\ X e. W /\ Y e. U ) -> X e. W ) |
|
| 5 | simp3 | |- ( ( F e. V /\ X e. W /\ Y e. U ) -> Y e. U ) |
|
| 6 | neldifsn | |- -. X e. ( _V \ { X } ) |
|
| 7 | dmres | |- dom ( F |` ( _V \ { X } ) ) = ( ( _V \ { X } ) i^i dom F ) |
|
| 8 | inss1 | |- ( ( _V \ { X } ) i^i dom F ) C_ ( _V \ { X } ) |
|
| 9 | 7 8 | eqsstri | |- dom ( F |` ( _V \ { X } ) ) C_ ( _V \ { X } ) |
| 10 | 9 | sseli | |- ( X e. dom ( F |` ( _V \ { X } ) ) -> X e. ( _V \ { X } ) ) |
| 11 | 6 10 | mto | |- -. X e. dom ( F |` ( _V \ { X } ) ) |
| 12 | 11 | a1i | |- ( ( F e. V /\ X e. W /\ Y e. U ) -> -. X e. dom ( F |` ( _V \ { X } ) ) ) |
| 13 | fsnunfv | |- ( ( X e. W /\ Y e. U /\ -. X e. dom ( F |` ( _V \ { X } ) ) ) -> ( ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) ` X ) = Y ) |
|
| 14 | 4 5 12 13 | syl3anc | |- ( ( F e. V /\ X e. W /\ Y e. U ) -> ( ( ( F |` ( _V \ { X } ) ) u. { <. X , Y >. } ) ` X ) = Y ) |
| 15 | 3 14 | eqtrd | |- ( ( F e. V /\ X e. W /\ Y e. U ) -> ( ( F sSet <. X , Y >. ) ` X ) = Y ) |